Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness
نویسندگان
چکیده
It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.
منابع مشابه
Stability in skipping gaits
As an alternative to walking and running, humans are able to skip. However, adult humans avoid it. This fact seems to be related to the higher energetic costs associated with skipping. Still, children, some birds, lemurs and lizards use skipping gaits during daily locomotion. We combined experimental data on humans with numerical simulations to test whether stability and robustness motivate thi...
متن کاملRunning on uneven ground: leg adjustment to vertical steps and self-stability.
Human running is characterized by comparably simple whole-body dynamics. These dynamics can be modelled with a point mass bouncing on a spring leg. Theoretical studies using such spring-mass models predict that running can be self-stable. In simulations, this self-stability allows for running on uneven ground without paying attention to the ground irregularities. Whether humans actually use thi...
متن کاملBirds achieve high robustness in uneven terrain through active control of landing conditions.
We understand little about how animals adjust locomotor behaviour to negotiate uneven terrain. The mechanical demands and constraints of such behaviours likely differ from uniform terrain locomotion. Here we investigated how common pheasants negotiate visible obstacles with heights from 10 to 50% of leg length. Our goal was to determine the neuro-mechanical strategies used to achieve robust sta...
متن کاملEffect of Fatigue on Ground Reaction Force Variables During Single-leg Landing in Athletes With the History of Anterior Cruciate Ligament Injury
Introduction: Since people experience fatigue after anterior cruciate ligament injury during exercises, it is important to understand how fatigue affects the biomechanical movement patterns. Therefore, this study aimed to investigate the effect of fatigue on ground reaction force variables during single-leg landing in athletes with a history of an anterior cruciate ligament spr...
متن کاملDoes a crouched leg posture enhance running stability and robustness?
Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a mode...
متن کامل